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ABSTRACT 
 

 The use of precursor data in risk assessments is being increasingly emphasized as 

the future of toxicology.  Due to the limited validation and the lack of vetted approaches 

for quantitatively incorporating biomarker data into dose-response assessments, current 

uses of biomarker data are usually constrained to hazard characterization.  This paper 

presents a biologically-informed empirical dose-response modeling approach that 

incorporates biomarker data and lung tumor response in rats exposed to titanium dioxide 

(TiO2).  The models are a series of linked “cause-effect” functions describing the 

relationships between successive key events, including the ultimate tumor response.  This 

approach was used to evaluate hypothesized pathways for biomarker progression from 

lung burden through several intermediate potential biomarkers of effect 

(polymorphonuclear lymphocyte count indicative of inflammation, proteins in 

bronchoalveolar lavage fluid indicative of respiratory tract epithelium damage, 

pulmonary fibrosis incidence, and alveolar cell proliferation), to the tumor endpoint.  

When the model allowed both fibrosis and cell proliferation to predict the tumor 

response, the cell proliferation data provided no additional predictive power beyond that 

of the fibrosis response.  The likelihood maximization approach allowed the calculation 

of a lung burden-based benchmark dose for lung tumors that directly incorporated data 

for biomarkers of exposure and effect.  Although enhancements to the model are needed 

before it or similar models can be used for regulatory purposes, the biomarker-based 

modeling approach demonstrated for TiO2 as a case study provides more-refined dose-

response estimation than that obtained using the traditional approach of dose-response 

modeling based only on administered dose and clinical endpoint data. 

 

  



1.0 INTRODUCTION  

 

Biomarkers have long been considered as indicators of exposure, toxicity, and 

susceptibility (NAS/NRC, 1989).  The recent NAS report on Toxicity Testing in the 21
st
 

Century (NAS/NRC, 2007) has increased attention on the use of biomarkers in a 

quantitative risk assessment context, particularly biomarkers of early effect obtained from 

in vitro high-throughput studies.  Regardless of type of biomarker, lack of validation has 

continued to be a key barrier to increased biomarker application in human health risk 

assessment (Maier et al., 2004).  Thus a goal of this current work is to validate early 

effect biomarkers and to connect them to the precursor events indicating perturbations 

from homeostasis that are predictive of clinical disease.  One important step in that 

direction is the development of a suite of methods to quantitatively connect biomarker 

data to established clinical endpoints, such as tumors.  In earlier work, we used a suite of 

validation approaches for evaluating exposure and effect biomarkers for benzene-induced 

acute myeloid leukemia (AML) (Haber et al., 2010; Hack et al., 2010) 

(www.tera.org/pubs).  In particular, a Bayesian network model was used to evaluate and 

compare individual biomarkers and quantitatively link the biomarker data along the 

exposure-disease continuum and with the ultimate tumor endpoint.  This paper builds on 

that earlier work, by presenting a proof-of-concept case study for the use of biomarker 

data to quantitatively link inhalation exposure to titanium dioxide (TiO2) with lung 

tumors using an alternative dose-response modeling approach.  While a number of 

enhancements would be needed prior to the use of this modeling or the results for 

regulatory purposes, this paper illustrates an approach for using a series of linked “cause-

effect” functions to describe the relationships between successive key events and the 

ultimate tumor response.  This illustrates an approach intermediate between the use of 

default methods and the labor- and data-intensive approach needed to develop and 

parameterize a biologically-based dose-response model.   

   

Titanium dioxide (TiO2) is a commercially important white pigment for paints 

and dyes and is used in a variety of consumer products (NIOSH 2005).  Epidemiology 

and toxicology studies have been conducted to evaluate the ability of TiO2 to induce 

respiratory tract diseases.  Additional toxicological investigations were spurred by the 

interest in examining the impacts of very small particle size on the ability of relatively 

nonreactive materials to induce lung toxicity.  TiO2 exposure is described in the available 

health effects studies based on its differing forms (rutile or anatase) and its particle size 

range.  Materials containing particles ranging from 0.1 to 10 µm are considered “fine” 

and those containing particles less than 0.1 µm are described as “ultrafine”.    

 

  Several epidemiological studies of workers exposed to TiO2 found little evidence 

of increased lung cancer mortality or morbidity (reviewed in NIOSH 2005).  Chen and 

Fayerweather (1988) found no significant association between TiO2 exposure and 

pulmonary disease, lung cancer, or fibrosis in a nested case-control study of 2,477 male 

workers (1,576 exposed) from two TiO2 production plants from 1935-1983 (quantitative 

exposure data were not collected).  Similarly, no effect on total cancers, lung cancer, or 

other causes of death was seen by Fryzek et al. (2003) in an evaluation of 4,241 workers 

employed for six months or more from 1960-2000 in four production plants in the US.  



Total mean TiO2 dust levels were reported as reaching as high as 13.7 mg/m
3
 in earlier 

years and as low as 3.1 mg/m
3
 in more recent years.  In a re-evaluation of lung cancer 

risk from a population-based case-control study of 293 substances, Boffetta et al. (2001) 

found no significant association between lung cancer risk and TiO2 exposure.  Boffetta et 

al. (2004) conducted a retrospective cohort mortality study of 15,017 workers in six 

European countries who had been employed in TiO2 manufacturing factories for at least 

one month. Although the authors found an increased risk of lung cancer mortality in 

males (SMR = 1.23; 95% CI = 1.10-1.38), there was no evidence of a dose-response 

relationship between increasing TiO2 concentration and lung cancer; the authors noted 

that the study may have lacked the statistical power to detect a dose-response.   

 

In contrast to the generally negative occupational data, TiO2 has been observed to 

cause lung cancer in rats.  Lee et al. (1985) exposed 200 rats (CD, Sprague-Dawley 

derived) to 0, 10, 50, or 250 mg/m
3 

fine, rutile TiO2 for 6 hr/day, 5 days/week for 2 years. 

Particle size was reported as 1.5-1.7 micrometers (µm) mass median aerodynamic 

diameter (MMAD).  Bronchioalveolar adenomas and squamous cell carcinomas (SCCs) 

were reported at 250 mg/m
3
.  Muhle et al. (1991) used exposure to 5 mg/m

3
 fine TiO2 

(77% respirable) as a control in a study of Fischer 344 rats exposed to toner for up to 24 

months, and found no increase in tumor incidence in the TiO2 exposed animals. Heinrich 

et al. (1995) exposed 100 Wistar rats and NMRI mice to ultrafine anatase TiO2 at 10 

mg/m
3
 concentration for 2 years.  The primary particle size was reported as 15 to 40 

nanometers (nm), but the particles agglomerated, so the actual MMAD was 0.8 µm. Mice 

suffered a significantly reduced lifespan with no tumors; however high control rates of 

tumors may have decreased the ability to detect significant carcinogenic effects.   In the 

rats, lung adenocarcinomas were statistically increased, and 20 rats developed benign 

keratinizing cystic squamous cell tumors of the respiratory tract.  These tumors were later 

recharacterized as proliferative keratinizing cysts, a lesion of questionable pathological 

significance to humans (Boorman et al., 1996; Fryzek et al., 2002; Dankovic et al., 2007); 

therefore these tumors were excluded from the analysis described in this paper.  

Similarly, re-evaluations of the SCCs in the Lee et al. (1985) study have determined that 

these lesions were mostly keratinizing cysts (Warheit and Frame, 2006), and so the SCCs 

in that study were excluded from our analysis as well.  

 

A key consideration in a quantitative risk assessment for cancer is the mode of 

action (MOA).  MOA is of particular importance for the current assessment, due to the 

direct relationship between identification of the MOA and identification of precursors or 

effect biomarkers that might be related to carcinogenesis.  Of the three tumor studies, 

only the Muhle et al. (1991) study presented data on precursor effects (aside from fibrosis 

incidence) useful for a biomarker-based assessment, and that study tested only one dose.  

However, the literature does contain other studies with more complete information on 

dose response for precursors that were considered in evaluation of potential biomarkers 

of effect. 

 

Limited data are available regarding the genotoxic effects of TiO2.  As reviewed 

by IARC (1989), TiO2 was negative in the only gene mutation studies available, 

conducted in Salmonella typhimurium and Escherichia coli.  Negative results were also 



observed in a DNA damage assay (cell killing in DNA-repair deficient Bacillus subtilis) 

and in a Syrian hamster embryo (SHE) cell transformation assay, which evaluates 

multiple aspects of the carcinogenic process.  As noted by NIOSH (2005), positive results 

have been observed for micronuclei in Chinese hamster ovary (CHO) cells (a measure of 

chromosome-level damage).  Other evidence of TiO2-indiuced DNA damage includes 

positive results for sister chromatid exchanges in CHO cells, and for apoptosis in SHE 

cells (apoptosis can result from multiple causes, including DNA damage).  These results 

are consistent with the conclusion that TiO2 can cause DNA damage, but not via a direct 

DNA-reactive mechanism. 

   

In light of the low direct DNA reactivity of TiO2 and other low-toxicity poorly 

soluble particles, it has been hypothesized that particle accumulation and the resulting 

inflammation play a causal role in the development of rat lung tumors following 

inhalation exposure (reviewed by Dankovic et al., 2007; Elder et al., 2005; ILSI, 2000).  

Reactive oxygen species (ROS) may be involved both in the initial regulation of the 

inflammatory process and as a cause of cytotoxicity and secondary gene mutations.  

Together with epithelial proliferation that is likely to result from inflammation, the 

secondary genotoxicity can favor tumor formation or progression.  This hypothesis is 

supported by the correlation of species susceptibility to lung tumors with precursors of 

inflammation, ROS, histopathology, and oxidative DNA damage.  For example, mice 

exposed to TiO2 via instillation showed no evidence of inflammation (Hubbard et al., 

2002) and TiO2 does not cause lung tumors in mice.  While this correlation held in this 

case, it does not hold in the broader scenario – some chemicals cause lung inflammation 

without causing lung tumors, and some chemicals cause lung tumors without causing 

inflammation.  However, lack of specificity is considered one of the less impactful 

considerations in evaluating a MOA hypothesis (US EPA, 2005).  The absence of 

evidence for direct mutagenicity for TiO2 also does not rule out the potential for some 

contribution from other causes of genotoxicity in the overall MOA.  Since precursor key 

events that might be associated with downstream genotoxicity mechanisms (e.g., 

inflammation and ROS generation) are incorporated into the analysis, some of these 

potential underlying DNA-related mechanisms may at least in part be accounted for in 

the resulting model.   

 

Figure 1 lays out the key steps in the inflammatory MOA.  The primary pathway 

shown focuses on the sequential and experimentally-observed intermediate steps that 

were amenable to modeling.  The dashed pathway from fibrosis to tumors represents a 

hypothesized pathway that has not been fully confirmed as being separate from the cell 

proliferation step.  The dotted pathways from lung burden reflect the presence of 

mechanistic steps (associative events or modulating factors) that are important for the 

MOA, and which may impact multiple steps of the “primary” pathway (indicated by the 

solid arrows), but for which there were no TiO2 data.  Specifically, because ROS and 

cytotoxicity are likely to play important and perhaps multi-faceted roles in the MOA, but 

data were not available to include these endpoints in the model, the model also included 

connections directly between the lung burden and all later steps in the “primary” pathway 

(except fibrosis and cancer), as a way of accounting for other influences that do not 

progress through the order of the primary pathway as shown.   As noted in the discussion, 



incorporation of data from other low-toxicity poorly soluble particles, in subsequent 

follow-up analyses, may allow these other steps to be incorporated into the model.   

 

Determination of the appropriate dose metric is a key consideration in quantitative 

modeling of particle dose-response.  Oberdorster et al. (1994, 1996) found that surface 

area of particles is a predictor of inflammatory response for ultrafine particles.  Primary 

experimental evidence supporting surface area as a predictor of inflammatory response 

comes from the work of Driscoll (1996) and Lison et al. (1997).  The appropriateness of 

surface area as a dose metric for fine and ultrafine particles was supported by the analysis 

of Dankovic et al. (2007), who found that surface area was a good predictor of the 

inflammatory response (as measured by polymorphonuclear lymphocyte [PMN] count) or 

tumor response following exposures to several low toxicity poorly soluble particles.  In a 

reanalysis of the Oberdorster et al. (1994) data, Moss and Wong (2006) described a 

further enhancement of this focus on surface area, recommending a dose metric of square 

centimeters of particle projected area per square centimeter of exposed macrophage 

surface, suggesting that this metric reflects the degree to which the macrophage surface is 

shielded from other objects.  Based on these considerations, our analysis used particle 

surface area as the dose metric.  The metric was normalized by lung weight, to account 

for differences in lung size among rat strains, and as an appropriate species-normalized 

approach for extrapolating to humans. 

 

Based on these considerations, this paper investigated an approach for 

quantitatively incorporating the precursor biomarker data into the dose-response 

prediction for carcinogenesis, using rat lung tumors induced by inhalation exposure to 

TiO2 as a case study.  Information on the steps in the pathogenic process was used to 

identify and order key events (and associated biomarkers) to include in the modeling.  

The case study was developed to demonstrate a possible approach that could be more 

fully developed for using biomarker data to inform dose-response behavior in the absence 

of knowledge to build a validated BBDR model. 

 

2.0 METHODS 

 

2.1 Specification of Cascade of Events 

 

The initial step in formulating and quantitatively representing the relationship 

between TiO2 exposure and lung cancer development in rats was the specification of a 

sequence, or progression, of events that linked such exposure to the occurrence of the 

tumorigenic responses observed in that species.  Figure 1 shows the progression that was 

the basis for this investigation.  As mentioned previously, connections between lung 

burden and the precursors reflecting loss of integrity of the blood:air barrier (e.g., lactate 

dehydrogenase [LDH] or protein in the bronchoalveolar lavage fluid [BALF]) and cell 

proliferation (bromodeoxyuridine [BrdU]) were included to represent the potentially 

important roles played by ROS and cytotoxicity, which are assumed to be consequences 

of (and quantitatively related to the level of) lung burden.  Data were not available to 

include the ROS and cytotoxicity endpoints directly in the model.  The use of lung 



burden directly as a surrogate for ROS and cytotoxicity implicitly assumes that ROS and 

cytotoxicity responses are proportional (linearly related) to lung burden. 

 

2.2 Identification and Selection of Studies and Endpoints 

 

A literature search was conducted to identify studies that might provide 

information about the consequences of TiO2 inhalation exposure and endpoints related to 

the pathophysiological progression laid out in Figure 1.  Since TiO2-induced tumors have 

been seen only in rats, data collection for potential tumor precursors was also focused on 

rats.   Initially, exposures other than inhalation (e.g., from instillation studies) were 

considered, but these studies were not used due to different patterns of particle deposition 

following inhalation and instillation exposure.  In vitro studies were also excluded, due to 

uncertainties in converting in vitro doses to units of lung burden.  Table 1 presents the 

data extracted from the studies and used in the modeling.  

 

The studies ultimately selected for analysis had to provide the following 

information.  First, there had to be enough data to estimate the lung burden in the 

appropriate dose metric (in m
2
 TiO2/g lung tissue) associated with the inhalation exposure 

groups.  As described in the Introduction, lung burden measured in terms of surface area 

of TiO2 per gram of lung tissue was considered to be the best available dose metric for 

describing the relationship between inhalation exposure to TiO2 and toxic effects, 

although other metrics have been proposed.  Typically, the requirement for data in this 

dose metric meant that, in addition to measurements of the mass of TiO2 in the lung, 

study-specific values for specific surface area (m
2
 per g TiO2) were reported or could be 

assumed, as well as some information about lung weight (or body weight from which 

lung weight could be computed).  From these data, the desired dose metric was calculated 

as (g TiO2/g lung)*(m
2
 TiO2 surface area/g TiO2) or (g TiO2/lung)*(m

2
 TiO2 surface 

area/g TiO2)/(g lung).  Table 2 shows the basis for the lung burden calculations for the 

studies selected for analysis. 

 

The second piece of required information was that the reported results for one or 

more endpoints needed to include sufficient data to allow likelihood calculations (see 

below).  For a continuous endpoint, that entailed the reporting of the sample size, the 

mean, and the standard deviation (or a value, such as standard error, from which standard 

deviation could be derived).  For a dichotomous endpoint, that entailed the reporting of 

the sample size and number affected. 

 

The last column of Table 2 indicates the endpoints that were ultimately included 

in the analysis for each study.  Table 3 provides all of the endpoints considered, including 

those selected for the analysis, by the type of event that they characterized; the types of 

events of interest were those represented in the progression in Figure 1.  Thus, for 

example, the PMN endpoint was one of those that were considered (and ultimately 

selected) to characterize the event of inflammatory response.  The endpoints selected 

were considered superior to the others primarily because they were reported with 

adequate data for more studies or because the dose-response pattern (across studies) was 



more consistent (e.g., the normalized results tended to be more monotonically related to 

lung burden).  

 

2.3 Data Representation 

 

For each of the three precursors, PMN, LDH, and BrdU, the precursor response 

has been “normalized” to enhance consistency with respect to the measurement of each 

endpoint across studies.  Such normalization reduces study-dependence, for example by 

eliminating systematic differences in measurement or reporting that might occur across 

laboratories, and it also facilitates the combination of observations that may have been 

reported in different formats (e.g., as percent of control from one study but with mean 

values in another study).  

 

Within each study, z-score normalization was done (Larsen and Marx, 2000). For 

a precursor, pj, with reported means m0, m1, …, mG, and standard deviations s0, s1, …, sG 

for the control group and the exposure groups 1 through G in a study, respectively, the 

normalized values used in the analysis are 

 

m’i = (mi – m0) / s0, 

s’i  = si/s0       Eq. 1 

 

for i from 0 to G.  Note that for every precursor from every study, m’0 = 0 and s’i = 1.  In 

the analyses described below, it is assumed that these normalized precursor observations 

are normally distributed.  The dose-response relationships used in those analyses, 

describing the relationship between lung burden and normalized precursor values have 

been set so that the intercepts of those relationships are 0. 

 

2.4 Likelihood-Based Approach 

 

For each of the three continuous precursors under consideration (PMN, LDH, and 

BrdU labeling), all of the normalized data from across the studies reporting the 

relationship between lung burden and the precursor values were pooled and plotted 

(Figure 2a).  The overall patterns of the response relative to lung burden were examined.   

A power function was determined to provide a reasonable representation of the overall 

patterns seen; such a function was used for all the subsequent dose-response analyses of 

the continuous endpoints.  This pre-selection of a dose-response function was an 

expedient assumption, as a way to limit the scope of the likelihood maximization 

problem, and a reasonable first step in the overall process of likelihood-based estimation 

described below, because the power function was apparently flexible enough to provide 

an adequate description of the dose-response relationships in the selected TiO2 data set.  

Additional comments concerning this initial step are included in the Discussion section 

below. 

 

The functional relationship between lung burden, b, and PMN was therefore 

represented as 

 



  p = α1*b^(β1),      Eq. 2 

 

where p represents the normalized values for PMN across all of the studies considered.  

In accordance with Figure 1, the remaining relationships among the continuous 

precursors were represented as follows: 

 

  l = α2*p^(β2) + γ2*b^(δ2)     Eq. 3 

 

  a =  α3*l^(β3) + γ3*b^(δ3)     Eq. 4 

 

where l is the normalized LDH response and a is the normalized alveolar BrdU index 

response. All the α, β, γ, and δ parameters were estimated as discussed further below. 

 

Fibrosis response rate was considered to be a function of only the precursor ‘l’, so 

the probability of a fibrotic response was modeled using a one-hit model: 

 

  P(f) = 1 – exp{-(j) – *l},     Eq. 5 

 

where the parameters to be estimated were (j), the study-specific background 

parameters (for j = 1, 2, 3 corresponding to the three studies that reported fibrosis rates; 

see Table 2), and , a coefficient for the normalized LDH response that was assumed to 

be constant across studies.  The inclusion of the study-specific (j) parameters was the 

way in which “normalization” was accomplished for this dichotomous endpoint, the 

reported rates of which might have been affected by differences among the three 

experiments (e.g., between males and females in the Lee et al., 1985, study). 

 

 Finally, the probability of tumors was modeled using the logistic equation: 

 

  logit(P(t)) = 0 + 1*ER(f) + 2*a,    Eq. 6 

 

where ER(f) was the extra risk of fibrosis.  Using extra risk of fibrosis as the predictor 

variable for tumor probability yields a relationship that is study-independent; extra risk 

calculated from the one-hit model for fibrosis can be shown to equal 1 – exp{– *l}, thus 

eliminating the study-specific parameters.  The normalized BrdU labeling endpoint, ‘a’ in 

equation 6, represents the possible effect of proliferation on the probability of tumor, and 

is already study-independent.   The normalization was performed to eliminate the need 

for study-specific parameters and none were included in the model for the precursor ‘a’ 

endpoint (Eq. 4).  Thus, Eq. 6 provides a description of the rates of tumor that is also 

study-independent. 

 

 The estimation of the parameters of equations 2 through 6 was carried out by 

maximization of the likelihoods associated with the observed data and the models of 

equations 2-6.  This approach obviates the need to have any specific study that measured 

and reported both cell proliferation (represented by variable ‘a’ in the above equations) 

and fibrosis incidence, for example.  In a study reporting fibrosis rates, the modeling uses 

the “imputed” normalized LDH response associated with the measured lung burden from 



that study as the independent variable in equation 5, along with its reported fibrosis rates.  

“Imputation” of values is accomplished by following the chain of equations back to lung 

burden, ‘b’, in this example getting imputed values of ‘l’ from equation 3, which in turn 

requires imputed values of ‘p’ from equation 2. 

 

More specifically, the following procedure was followed for estimation.  The 

parameters for equation 2 were estimated by maximizing the likelihood of the 

observations of p from all the studies reporting values of PMN.  The likelihood was 

defined assuming that the normalized responses were normally distributed with a mean 

value determined by lung burden and equation 2.  The variances for each group were 

considered to be independent (one variance parameter was estimated for each group).  An 

Excel spreadsheet was used to define and optimize (maximize) the likelihoods.  All of the 

likelihoods discussed below for the continuous endpoints were based on a normal 

distribution assumption with independent (group-specific) variances.  

 

Given the maximum likelihood estimates (MLEs) for equation 2, imputed values 

for p in equation 3 were calculated.  Then the maximum likelihood approach was applied 

again to equation 3, considering the parameters of equation 2 to be fixed at their MLE 

values.  This approach was repeated for equations 4, 5 and 6.  In the case of the 

dichotomous endpoints (fibrosis and tumors), the likelihood was based on an assumption 

of independent binomial responses within each dose group. 

 

This approach was followed to examine whether simplifications of equations 3, 4, 

and 6 adequately fit the data (compared to their full forms).  For equations 3 and 4, the 

simplifications considered consisted of dropping the terms using lung burden, b.  For 

equation 6, we examined the possibility that P(t) did not depend on either ER(f) or on the 

precursor ‘a’, given the presence of the other term.   

 

Once determinations of the final forms of the equations 3 through 6 were made as 

described above, the chosen forms were used in an “overall” likelihood calculation.  That 

is, when considering the entire ensemble of data (lung burdens, PMN responses, LDH, 

responses, etc., up to and including the tumor responses) one can calculate the 

simultaneous likelihood of observing that ensemble, rather than sequentially maximizing 

the likelihood for discrete segments of the progression and treating the earlier estimates 

as fixed.  Thus, the total log-likelihood being maximized can be expressed as  

 

  LL = LLp +  LLl + LLa + LLf + LLt,   Eq. 7 

 

where, LLp is the log-likelihood for the pooled data on normalized PMN, and so on.  Of 

note is that it is the sum of the log-likelihoods that is being maximized and that all of the 

parameters of equations 2 through 6 are being allowed to vary at the same time.  This 

approach might result in a lower likelihood for one of the components, say LLa, 

compared to what would have been estimated by considering that likelihood alone (fixing 

any parameter values in the earlier equations), but if that decrease is offset by an increase 

in the likelihood for another component in the sum, say LLf, then the parameters 

estimated this way give a better representation of the entire set of data.  An Excel 



spreadsheet using the “Solver” function was used for this overall likelihood 

maximization, with starting values for the parameters set equal to those determined in the 

sequential fitting procedure described above. 

 

3.0 RESULTS 

 

This proof-of-concept analysis used likelihood maximization approaches to 

estimate the quantitative “cause-effect” relationships among TiO2 lung burdens, precursor 

events, and lung tumors following inhalation exposures of rats to TiO2.  In vitro studies 

of precursors were excluded due to difficulties in converting to the dose metric 

considered most predictive of in vivo toxicity (m
2
 TiO2/g lung tissue).  The entire set of 

original and normalized data points used in this analysis is shown by study in Appendix 

A.   

 

The log-likelihood estimates derived for the different approaches (Table 4) can be 

compared to indicate how much difference (in terms of fit to the data) was achieved by 

each of the approaches.  The “sequential” analysis shows the maximized likelihoods for 

each progression from one precursor to the other, where the maximization for a given 

stage is dependent on the maximization obtained for every previous stage.  The overall 

likelihood varies all of the parameters simultaneously and maximizes the sum of the log-

likelihood components (as opposed to maximization of the component parts one at a time 

and in order, which is what the sequential approach does).  The overall maximization 

achieved a somewhat better overall likelihood.  As can be seen in Table 4, that better 

overall likelihood reflected improvements of the fit for some linkages, lessened by 

slightly worse fit for other linkages.  The fit was slightly worse (log-likelihood values 

that were slightly less) for the relationship between PMN and lung burden and for the 

relationship between LDH and PMN.  Conversely, the log-likelihoods for the relationship 

between LDH and fibrosis and for the relationship between fibrosis and tumors were 

somewhat greater (because those relationships now had slightly adjusted “independent” 

variables being used in those two dose-response functions).  The difference between the 

sums of the likelihoods for the sequential approach and for the overall approach was not 

large; from a “goodness-of-fit” perspective, there would be little visual difference.  

 

The baseline log-likelihoods shown in Table 4 are the maximally parameterized 

(saturated) likelihoods achieved when no dose-response model is fit (i.e., when each dose 

group is considered separately and independently from all other dose groups).  Such a 

baseline is an idealized limit on what a maximum likelihood could achieve.  It does not, 

for example, account for the fact that the dose-response functions of interest are 

monotonic; if the data are nonmonotonic, the baseline likelihood basically ignores such 

data “quirks” because it does not even consider an explanatory variable such as dose.  

Nevertheless, a model-achieved maximum log-likelihood is sometimes compared to the 

baseline (saturated model) maximum log-likelihood to determine how well a model fits.  

We have not pursued such goodness-of-fit issues here. 

 

All of the model-based likelihoods (sequential and overall) shown in Table 4 are 

for the versions of the models (equations 3, 4, and 6) stripped of any terms that did not 



add to the likelihood when the sequential fitting was done.  The parameter estimates 

obtained for the sequential fitting procedure are shown in Table 5.  Thus, for predicting 

LDH, a separate term corresponding to a direct effect of lung burden on LDH (above and 

beyond the effect mediated through PMNs) was not required (γ2 = 0).  Similarly, for the 

alveolar BrdU index representing cell proliferation, no direct effect of lung burden was 

required above and beyond the effect mediated through LDH (and hence through PMN to 

lung burden).  Perhaps of greater interest is the observation that fibrosis (as predicted 

from lung burden through PMNs and LDH) could predict tumor incidence without an 

additional term corresponding to cell proliferation.  (The full model corresponds to Eq. 

6.)   In other words, there was no added predictive power when the cell proliferation 

endpoint was added to the logistic equation (Eq. 6) for tumor rate (2 = 0).  Even with 

starting parameter values reflecting a hypothesis that tumor incidence could be fully 

explained by cell proliferation, maximizing the likelihood resulted in 2 = 0, and the 

tumor incidence predicted by fibrosis and its precursors.  In addition, fitting the model 

considering cell proliferation (and its precursors) alone resulted in a substantially lower 

log likelihood than fitting the model with fibrosis (and its precursors) alone.  This 

suggests that the processes leading to a change in the alveolar air:blood barrier lead to 

tumors through changes related to, or correlated with, those that also induce fibrosis, and 

that there may not be a separate pathway by which changes in the air:blood barrier lead to 

pre-neoplastic cell proliferation.  Because of this last result, the overall likelihood 

approach did not change the likelihood component (i.e., reflected by the value of -42.731 

in Table 4) associated with cell proliferation (BrdU) – that component could be 

maximized separately from the single pathway leading to the prediction of tumor rates 

through prediction of the extra risk of fibrosis. 

 

Figures 3 through 7 show the modeled data and the maximum likelihood 

estimates of the dose-response relationships.  In all cases, the x-axis shows lung burden 

(in m
2
 of particle surface area/g lung); the sequence of stages leading from lung burden to 

the endpoint in question has been “stepped through” to obtain the dose-response curves 

shown.  For example, in Figure 4, LDH is shown as a function of lung burden, where 

equation 3 has been applied (to get normalized LDH predictions) using the normalized 

PMN predictions of equation 2, which gives normalized PMN values as a function of 

lung burden.  In all of these figures, the parameters corresponding to the overall 

maximum likelihood approach have been used (Table 6).  Although the fitted curves do 

not fully predict the data, this is not surprising; in light of the wide variability of the input 

data for some endpoints (e.g., BrdU), even after normalization, it would be impossible to 

fit the data perfectly with a monotonic curve.  In addition, the apparent discrepancies in 

the low-dose tumor data vs. fitted line reflect differences of tumor incidence of <3%.  

Other issues related to fit are addressed in the discussion. 

 

One interesting observation is that since tumor rates are made to explicitly depend 

on the extra risk of fibrosis, the predicted dose-response curve for the probability of 

tumors as a function of lung burden plateaus at about 0.17 to 0.18 for lung burdens 

approaching 1.5 m
2
 TiO2/g lung.  That is because the fibrosis extra risk approaches its 

maximum of 1 at those lung burden values.  The plateauing of a tumor response (at a 

value less than 1) is not something that would be predicted if one modeled lung cancer 



rates as a function of lung burden directly.  A BMD10 (the dose corresponding to a 10% 

extra risk of lung cancer) can be estimated from the curve in Figure 7 to be about 0.534 

m
2
 TiO2/g lung.   

 

In order to convert this dose measure to a concentration in air, we used the ratios 

in Dankovic et al. (2007) between the lung burden (in m
2
/g lung, for a human exposed for 

a 45-year working lifetime) and the air concentration, for fine and ultrafine particles.  

Dankovic et al. used two different models to calculate the air concentration, the 

CIIT/RIVM Multi-Path Model of Particle Deposition (MPPD) software and a lung 

interstitialization/sequestration model.  While the conversions could be conducted using 

the same models, using the ratios of the results allows a more direct comparison with the 

Dankovic et al. (2007) results.  Using the ratios obtained from comparison of the results 

of Dankovic et al. for the Bayesian model averaging using the MPPD model from 

Dankovic et al., the BMD10 of 0.534 m
2
 TiO2/g lung corresponds to a 45-year working 

lifetime exposure to 76 mg/m
3
 for fine particles, and 8.6 mg/m

3
 for ultrafine particles.  

Similarly, the concentration corresponding to a 1/1000 risk (a value commonly used for 

occupational risk assessment) for a 45-year working lifetime exposure is 3.8 mg/m
3
 for 

fine particles, and 0.44 mg/m
3
 for ultrafine particles.  Note that this extrapolation is based 

directly on the data, and does not include any assumption about linearity or lack thereof. 

 

4.0 DISCUSSION 

 

The purpose of this project was to use data on effect biomarkers (precursor 

endpoints) quantitatively, to inform the dose-response evaluation and quantitative 

estimate of cancer risk.  In this proof-of-concept analysis, we successfully used a series of 

linked “cause-effect” functions, fit using an overall likelihood approach, to describe the 

relationship between successive key events and the ultimate tumor response.  This 

approach has the advantage of estimating the cancer risk in a way that incorporates MOA 

data, but is not specifically limited to a linear or nonlinear (uncertainty factor-based) 

extrapolation from a point of departure.  In doing so, this study makes use of the early 

effects biology to evaluate the tumor risk, and so requires less extrapolation from the 

data, because it explicitly accounts for the pattern of changes in the precursor cause-effect 

relationships.   

 

The progression of events selected as the basis for the investigation was driven to 

some extent by the data that were available for analysis.  For example, even though ROS 

are thought to play a major role in inflammation, no measure of ROS was included in the 

model.  The only available data on the production of ROS were from an in vitro study, 

and the tissue dosimetry is not sufficiently refined to extrapolate from such studies.  Had 

appropriate in vivo ROS measurements been available, the progression might have 

included, on the one hand, a linkage between lung burden and the endpoint(s) 

representing ROS production and, on the other hand, linkages between production of 

ROS and inflammatory cell responses, loss of integrity of lung cells, and cell 

proliferation.  Lacking endpoints considered to be representative of ROS production, the 

progression of events (Figure 1) included links directly between TiO2 lung burden and 

each of the stages, loss of integrity and cell proliferation.  Those links were intended as a 



means of allowing the analysis to factor in intermediary events such as ROS production 

that might influence loss of integrity or cell proliferation, on top of the effects that were 

directly modeled. 

 

As it turned out in this analysis, the links directly between lung burden and loss of 

integrity (as measured by LDH), and between lung burden and cell proliferation (as 

measured by BrdU labeling) were found not to be necessary when the primary pathway 

from lung burden through inflammatory cell proliferation (as measured by PMN), then 

through loss of integrity to cell proliferation, was included.  That is, the sequential 

likelihood approach employed here rejected the need (in terms of fit to these data) to 

include such links; as shown in the Results section, the parameter values corresponding to 

those links could be set to zero without impact on the likelihood.  When the relationships 

between the endpoints are represented as indicated in this analysis, the effect of TiO2 

lung burden on the proliferation of lung cells, as well as on fibrosis and ultimately lung 

tumors, appears to be explainable through the pathway that includes inflammation and 

loss of integrity.  These observations are conditional on the constraints within which the 

analysis was carried out, e.g., conditional on the fact that all the cause-effect relationships 

were modeled with a power function.  It is also always worth keeping in mind that the 

proposed explanatory variables in equations 3, 4, and 6 would be correlated because they 

all ultimately depend on (are predicted from) lung burden.    

 

Moreover, the pattern of dose-responses observed for the selected precursors 

(Figures 2a and 2b) supports the idea of a progression or cascade of events as shown in 

Figure 1.  The PMN response was observed to be increased at lower lung burdens than 

the LDH response, and the LDH response was increased at lower lung burdens than the 

alveolar BrdU index of cell proliferation.  Similarly, rates of fibrosis were observed to 

increase before the rates of tumors, and both of those were increased at about the same 

lung burden levels as those that increased cell proliferation.  Although not shown here, 

the other endpoints that might have been selected as representatives of the stages of the 

progression (e.g., macrophages for the inflammatory response, GGT for the loss of 

integrity, or BrdU index for bronchiolar cells for cell proliferation) also tended to support 

the sequence shown in Figure 1. 

 

The assumed relationships between pairs of continuous endpoints/precursors were 

fixed via preliminary examination of the general pattern of dose-response.  Such a pre-

selection of a dose-response function (the power function) appeared to be reasonable (and 

the power function is fairly flexible in fitting different dose-response patterns), but it is an 

expedient approach.  For this analysis the power model appeared to provide reasonable 

fit, and our focus was developing and implementing a procedure that can be used for 

cross-study integration of various endpoints thought to be important for characterizing a 

cascade of effects leading to a measureable endpoint of clinical concern.  Thus, we have 

not rejected the selected models or their fits to the data due to large chi-squared 

goodness-of-fit statistics.
1
   A more rigorous procedure that investigates alternative dose-

                                                 
1
 Likelihood ratio test statistics can be determined based on the log-likelihoods shown in Table 4.  The 

saturated model for each endpoint had 36, 36, 24, 20, and 20 parameters for the PMN, LDH, BrdU, 

fibrosis, and tumor data sets, respectively, compared to 2, 2, 2, 4, and 2 parameters for the corresponding 



response functions would be consistent with current approaches for dose-response 

modeling to support risk assessments and would be an important enhancement if this 

analysis were intended to be used for regulatory purposes.  Nevertheless, the current 

model selection approach we have used is appropriate for demonstrating the methods for 

developing a linked functions approach for more fully using biomarker data to inform 

dose-response.  In addition, this analysis did not consider models that included a 

threshold for any of the precursor events, and so this analysis could not evaluate whether 

a threshold exists for these events or for tumors.  Threshold models could be considered 

in an expanded search for suitable models, although it should be noted that inclusion of 

threshold terms in models adds computational difficulties and may be controversial.  In 

any case, extensions of this current investigation would consider a wider range of dose-

response functions and extend the likelihood-based approach used here to include model 

choice as part of the maximization of the likelihood; more elaborate algorithms for 

likelihood maximization would be needed to accomplish that. 

 

Similarly, model choice for the dichotomous endpoints (fibrosis and tumors) was 

based on expediency and identification of curves (1-hit for fibrosis and logistic for 

tumors) with the appropriate underlying shape to fit the data.  The fibrosis response rises 

fairly rapidly, with clear increases at lung burdens of 0.25 and 0.3 in the one study (two 

data sets – Lee et al. males and females) in which it was measured at relatively high lung 

burdens.  The one other study that reported fibrosis incidence (Muhle et al, 1991) 

reported only a small increase, but tested much lower lung burdens.  In contrast, at the 

same lung burden doses (0.25 and 0.3) where clear increases in fibrosis incidence were 

noted, there was no increase in lung tumors in the Lee study, and so a model that could fit 

an S-shaped curve was needed.  As for the continuous data, a more rigorous procedure 

that investigates alternative dose-response functions would be consistent with current 

approaches for dose-response modeling in risk assessment.  Furthermore, the use of a 1-

hit model for the fibrosis data does not imply anything about a specific mechanism; the 

choice of model function was based on adequate overall dose-response pattern 

 

Future analyses will have to consider how goodness-of-fit determinations can be 

best performed with endpoints that are linked as shown here.  For example, the fits of the 

model to the LDH data, with PMN as the predictor (explanatory variable), depend not 

just on the predictions of the LDH observations but also on the predicted PMN values, so 

it is not as straightforward to determine the number of parameters that are “used” by the 

LDH model, compared to the case where one could model LDH as a function of lung 

burden directly.  Moreover, as mentioned above, the comparison of the fitted model 

likelihoods to those for the saturated models is not clearly the best basis for determining 

how well these models predict data that vary nonmonotonically, when the models 

themselves are constrained to be monotonic.  This is an issue with the “alternative” 

hypothesis in the goodness-of-fit calculation, one that needs a more complete 

                                                                                                                                                 
fitted models.  The resulting p-values for goodness of fit were therefore 0.0009, 0.014, 0.001, 0.0002, 

0.061, for the PMN, LDH, BrdU, fibrosis, and tumor models, respectively, based on the sequentially 

maximized model likelihoods.  We have not emphasized these model fit statistics, for the reasons expressed 

elsewhere and because it is not clear that the simple likelihood ratio approach is the most statistically 

appropriate method of testing fit in this case of linked models. 



consideration, not just for the proposed approach but for risk assessment that assumes 

monotonicity in general. 

 

In addition, future analyses could examine other issues related to sensitivity by 

determining the impact on the overall log-likelihood, LL, and on the components of LL 

(the LLj values), of changing the parameters in each of the equations representing the 

transitions from one stage of the progression to another.  Those stages for which the 

sensitivity is highest are those for which additional data might have the biggest impact on 

identifying the risk associated with TiO2 exposure; they are the parameters most 

important to refine with better estimates – and thus such analyses would inform 

additional toxicology research needs. 

 

The idea of examining changes in the log-likelihoods in relation to parameter 

value changes is also related to confidence limit calculations.  Though not conducted in 

this analysis, in theory a profile-likelihood approach could be used to define bounds on 

risk estimates, i.e., bounds on the lung cancer risk associated with specific values of lung 

burden, or vice versa (Crump and Howe, 1983).  Alternatively, simulation-based 

approaches, e.g., bootstrapping or Markov chain Monte Carlo (MCMC), could be used to 

characterize the uncertainty associated with risk-related estimates (Carlin and Louis, 

2000).  Development of any of those approaches should use the overall likelihood as the 

basis for inference when lung cancer is the clinical endpoint of concern but the 

progression to tumors is mediated through a sequence of known or suspected precursors. 

 

An MCMC approach offers other advantages as well.  In the current analysis, we 

have treated variance as a “nuisance” parameter; i.e., we assumed independent and 

group-specific variance terms for which it was simple to calculate the maximum 

likelihood estimates.  The focus of this investigation was on the dose-response pattern 

rather than the variance pattern.  As an extension to this work, one might be interested in 

modeling the variances as well as the responses for endpoint ‘l’ (e.g., LDH) as a function 

of its precursor, endpoint ‘p’ (e.g., PMN).  That would allow one to move away from 

using only the maximum likelihood estimates of the dose-response for ‘p’ as predictors 

for ‘l’; one could, alternatively, define the likelihood based on the predicted mean and 

variance for ‘p’ at the lung burdens for which ‘l’ was observed.  MCMC techniques 

would be well suited to provide not only the maximum likelihood estimates of the 

parameters, but also distributions of likelihoods and parameter estimates as well (Carlin 

and Louis, 2000). 

 

Another possible extension of this work is to broaden the input data.  As noted 

earlier, the inflammation and tumor data for low-toxicity poorly soluble particles form a 

consistent dose-response curve (when surface area is the dose metric) (Dankovic et al., 

2007).  Therefore, the model could be extended by including dose-response data for other 

low-toxicity poorly soluble particles for which there is lung burden data in the 

appropriate form, and data on the precursor biomarkers of interest.  Such data could also 

help to fill in gaps, such as the absence of data on ROS for TiO2 exposure.  Meaningful 

inclusion of such data; however, does require the assumption that non-reactive insoluble 

particles are all acting via the same basic toxicological mechanisms.     



 

Regardless of the development of the extensions to this work as mentioned above, 

the product of the current analysis provides a proof of concept for an approach to using 

biomarker data to provide a MOA-informed analysis that extends the dose-response 

curve below the range of the tumor data.  This approach provides an MoA-based 

alternative to current default low-dose extrapolation approaches (linear or uncertainty 

factors), and can be used to improve the mathematical description of noncancer or cancer 

dose-response relationships in the low-dose region, without the need for a full 

biologically-based dose-response (BBDR) model. 

 

The current analysis, if enhanced as described above (e.g., inclusion of confidence 

limits, consideration of multiple dose-response functions and goodness of fit), could 

provide a rational basis for setting regulatory standards for TiO2 exposures.  If one is 

interested in the risk of tumor development, the approach shown here provides a way to 

identify the lung burden associated with a risk level of interest, based on the assumption 

that lung tumors arise via the progression of precursors as represented in Figure 1.  Thus, 

one can focus on the risk of the endpoint of concern (cancer) while accounting for the 

dose-response patterns of the precursors.  This is in contrast to approaches that attempt to 

set standards based on changes in the precursors (e.g., a 10% change in the mean for 

some continuous intermediate endpoint such as PMN levels) estimated in the absence of 

knowledge about the impacts of such a change on the cancer endpoint of interest.  

Although comparison with alternative analysis methods does not constitute validation of 

an approach, it is of interest that the concentration calculated here as being associated 

with a 1/1000 risk over a 45-year working lifetime exposure for exposure to fine 

particles, 3.8 mg/m
3
, is in the range of the concentration calculated by Dankovic et al. 

(2007) based on tumor data (1.0 – 31 mg/m
3
).  Similarly, the concentration that we 

calculated as being associated with a 1/1000 risk for exposure to ultrafine particles, 0.44 

mg/m
3
, is within the range of 0.1 to 3.5 mg/m

3
 estimated by Dankovic et al. (2007).  

 

The idea of a progression of stages through various precursors up to cancer 

development is not new.  The two-stage cancer model (Moolgavkar and Venzon, 1979; 

Moolgavkar and Knudson, 1981), for example, also hypothesizes a sequence of events, in 

that case represented by a progression through cell types from normal to intermediate to 

tumorigenic.  The two-stage model has a very rigid structure and is based on rates of 

transition.  Of course, the general two-stage framework does not specify how those rates 

depend on the level of exposure.  Moreover, it differs from the modeling of precursors 

pursued here in that it depends largely on things that are not measurable (accumulation of 

“intermediate” cells as well as the transition rates themselves).  Rather, those 

unmeasurables and their relationship to exposure must be inferred from indirect 

observations; with the rigid two-stage structure, estimates of the important parameters of 

the model can (sometimes) be obtained (given other assumptions about exposure 

dependency).  For our analysis, we are using a less rigid structure (allowing the empirical 

data to suggest the inter-relationships among the precursors and between the precursors 

and the cancer incidence rates), and relying on measurable quantities (precursor 

observations) to estimate parameters of the relationships.  Thus, one important difference 

relates to what data are considered useful for a risk assessment.  The emphasis here is on 



collecting (and using) measurable, relevant observations, with the relationships among 

those observations estimated by some flexible and, frankly, not-so-biologically based 

dose-response equations.  In contrast, the two-stage model defines the model structure (to 

some degree biologically based) and then tries to infer parameter values for that structure 

using whatever data are best suited, which is often the severest limitation.  The empirical, 

“data driven” approach of the approach described here appears to be appropriate for the 

analysis of TiO2 lung cancer prediction; a fuller biologically based set of relationships 

among the precursors and lung cancer may never become available but, in contrast, 

measurement of the precursors of interest appears to be relatively straightforward.  

Development of this approach, therefore, aims to maximize the use of early effect data to 

inform dose-response behavior for a clinically relevant endpoint for risk assessment.   

This proposed approach continues the movement toward increasing biology-based 

decision-making, and provides an empirical method that can enhance assessments for the 

vast majority of chemicals for which data are inadequate to derive a full biologically-

based dose-response model.      

 

Thus, this paper has exhibited an approach for deriving an empirical relationship 

between lung burden and cancer risk that can be used to set exposure limits and that 

explicitly considers the effect of precursor biomarker effects on the cancer incidence in 

rats.  Based on this empirical relationship, we estimated a benchmark “dose” level 

associated with a cancer risk, and extrapolated that lung burden dose to an air 

concentration under occupational exposure conditions.  Similar extrapolations could be 

done for other exposure scenarios.  Application of appropriate uncertainty factors to 

values estimated from a more complete analysis would yield an estimate that could be 

used for setting occupational exposure limits. 
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FIGURE LEGENDS 
 

Figure 1.  Pathophysiological progression for lung tumors in rats exposed to TiO2.  Solid 

lines reflect well-characterized effect relationships, the dashed line reflects a 

hypothesized relationship, and the dotted lines reflect hypothesized relationships for 

which data were not available. 

 

Figure 2.  Dose-response data for all continuous (2a) and quantal (2b) data used in the 

modeling.  Each endpoint is shown by a different symbol.   

 

Figure 3.  PMN vs. Lung Burden - observed data and results predicted using Eq. 2.  Each 

study is shown as a different symbol.  CIIT pig – CIIT pigment study, Bermudez (2002); 

CIIT ult – CIIT ultrafine study, Bermudez (2004); Ferin et al. (1992); Henderson et al. 

(1995); Ma Hock et al. (2008). 

 

Figure 4.  LDH vs. Lung Burden - observed data and results predicted using Eqs. 2 and 3.  

Each study is shown as a different symbol.  Studies as in Figure 3. 

 

Figure 5.  Alveolar Cell BrdU Index vs. Lung Burden - observed data and results 

predicted using Eqs. 2, 3 and 4.  Each study is shown as a different symbol.  Studies as in 

Figure 3. 

 

Figure 6.  Fibrosis vs. Lung Burden - observed data and results predicted using Eqs. 2, 3, 

4, and 5.  The three curves have a common slope but study specific intercepts.  Each 

study is shown as a different symbol, with separate symbols and intercepts for the male 

and female rats in the Lee et al. (1985) study.   

 

Figure 7.  Lung Tumor vs. Lung Burden - observed data and results predicted using Eqs. 

2, 3, 4, 5, and 6 



 

Table 1.  Summary of Exposure and Response Data for Studies and Endpoints Included in the Analysis  
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Muhle et al. 
(1991) 

Fine: 6 
hr/d, 5 
d/w, 24 

mo 

0 0 - -- -- - -- -- - -- -- - -- -- 90 1 100 3 

F344, 
Male and 
Female 

5 0.015 - -- -- - -- -- - -- -- - -- -- 90 5 100 2 

 

Lee et al. 
(1985) 

Fine: 6 
hr/d, 5 
d/w, 24 

mo 

0 0 - -- -- - -- -- - -- -- - -- -- 79 11 79 2 

CD, Male 

10 0.032 - -- -- - -- -- - -- -- - -- -- 71 7 71 1 

50 0.18 - -- -- - -- -- - -- -- - -- -- 75 49 75 1 

250 1.2 - -- -- - -- -- - -- -- - -- -- 77 76 77 12 

CD, 
Female 

0 0 - -- -- - -- -- - -- -- - -- -- 77 3 77 0 

10 0.069 - -- -- - -- -- - -- -- - -- -- 75 4 75 0 

50 0.28 - -- -- - -- -- - -- -- - -- -- 74 41 74 0 

250 1.2 - -- -- - -- -- - -- -- - -- -- 74 73 74 13 

 

Heinrich et 
al. (1995) 

Ultrafine: 
24 

months 
0 0 - -- -- - -- -- - -- -- - -- -- - -- 217 1 



Wistar, 
Female 

10 1.3 - -- -- - -- -- - -- -- - -- -- - -- 100 19 

 

Ferin et al. 
(1992) 

Fine and 
Ulrafine: 
6 hr/d, 5 
d/w, 12 

wk 

0 0 - -- -- 6 6.80E-6 3.00E-6 - -- -- - -- -- - -- -- -- 

F344, 
Male 

23.5 0.17 - -- -- 6 8.74E-4 1.92E-4 - -- -- - -- -- - -- -- -- 

23 0.028 - -- -- 6 4.03E-5 3.10E-5 - -- -- - -- -- -- -- -- -- 

 

Henderson 
et al. 

(1995) 

Fine: 
6h/d, 

5d/w, 4 
wk 

0 0 - -- -- 6 2.60E+3 2.69E+3 6 0.49 0.049 - -- -- -- -- -- -- 

F344, 
Female 

0.1 0.000029 - -- -- 6 3.70E+3 9.06E+3 6 0.41 0.098 - -- -- -- -- -- -- 

1 0.00048 - -- -- 6 2.30E+3 5.63E+3 6 0.44 0.049 - -- -- -- -- -- -- 

10 0.0029 - -- -- - -- -- 6 0.55 0.073 - -- -- -- -- -- -- 

 

Ma-Hock et 
al. (2008) 

Ultrafine: 
6 hr/d,  

5 d 
0 0 - -- -- 5 0.62 0.84 5 0.31 0.060 5 4.27 1.52 -- -- -- -- 

Wistar 

2 0.0074 - -- -- 5 0.91 0.6 5 0.25 0.360 6 4.99 3.02 -- -- -- -- 

10 0.034 - -- -- 5 16.03 5.05 5 0.37 0.290 6 5.27 1.19 -- -- -- -- 

50 0.1 - -- -- 5 133.15 56.177 5 1.07 0.450 6 7.28 1.11 -- -- -- -- 

 

Driscoll et 
al. (1991) 

Fine: 6 
hr/d, 5 d 

0 0 - -- -- - -- -- 5 46 26.833 - -- -- -- -- -- -- 

F344, 
Male 

50 0.0076 - -- -- - -- -- 5 34 6.708 - -- -- -- -- -- -- 

 

Bermudez 
(2002) 

Fine: 
6hr/d, 

0 0 5 0.2 0.450 - -- -- 5 23.2 11.367 5 7.25 1.635 -- -- -- -- 



5d/w, 13 
wk 

F344, 
Female 

10 0.015 5 2.7 1.151 - -- -- 5 15.8 5.119 5 5.54 1.214 -- -- -- -- 

50 0.095 5 66.3 12.423 - -- -- 5 92.2 17.196 5 8.19 0.562 -- -- -- -- 

250 0.25 5 82.9 5.650 - -- -- 5 279.6 16.682 5 9.81 2.599 -- -- -- -- 

 

Bermudez 
(2004) 

Ultrafine: 
6hr/d, 

5d/w, 13 
wk 

0 0 5 0.4 0.418 - -- -- 5 24.6 2.074 5 4.53 1.777 -- -- -- -- 

F344, 
Female 

0.5 0.0058 5 0.5 0.354 - -- -- 5 25.8 1.924 5 6.23 2.416 -- -- -- -- 

2 0.023 5 6.5 4.228 - -- -- 5 29.2 6.611 5 7.81 1.223 -- -- -- -- 

10 0.15 5 64.8 5.346 - -- -- 5 122.2 18.580 5 12.18 2.533 -- -- -- -- 

 

Abbreviations:  PMN = polymorphonuclear lymphocytes; LDH = lactate dehydrogenase 
a
 Neutrophil data were combined with PMN data after normalization. 

b
The following tumor types were observed and included:   Muhle et al., 1991 – lung adenoma and adenocarcinoma; Lee et al., 1985 –

bronchioloalveolar adenoma;  Heinrich et al., 1995 – adenomas and adenocarcinomas.  Squamous cell carcinomas and keratinizing 

cysts were not included for any study.  



 

Table 2.  Studies and Endpoints Included in the Analysis 

 

Study 
Rat 

Strain/Sex 

TiO2 

Characteristics 

Specific 

Surface 

Area, m
2
/g 

(source) 

Other Basis 

for Lung 

Burden 

Calculation 

Endpoints 

Included in 

Analysis 

Lee et al. 

(1985) 
CD/M Fine 

4.99 

(Driscoll, 

1996) 

NIOSH 

(2005) 

Fibrosis, 

Tumors 

Lee et al. 

(1985) 
CD/F Fine 

4.99 

(Driscoll, 

1996) 

NIOSH 

(2005) 

Fibrosis, 

Tumors 

Driscoll et 

al. (1991) 
F344/M Fine 

4.99 

(Driscoll, 

1996) 

Lung 

wt/body wt 

ratio from 

Delp et al. 

(1998) 

LDH 

Muhle et 

al. (1991) 
F344/M&F Fine, Rutile 

4.99 

(Driscoll, 

1996) 

NIOSH 

(2005) 

Fibrosis, 

Tumors 

Ferin et al. 

(1992) 
F344/M 

Fine 

Ultrafine 

6.5 

50 

Lung 

wt/body wt 

ratio from 

Delp et al. 

(1998) 

PMN 

Heinrich 

et al. 

(1995) 

Wistar/F Ultrafine 
48 

(reported) 

NIOSH 

(2005) 
Tumors 

Henderson 

et al. 

(1995) 

F344/F Fine 
6.68 

(NIOSH) 
g/g lung 

reported 
PMN, LDH 

Bermudez 

et al. 

(2002) 

F344/F Pigment (fine) 
8.46 

(reported) 

Individual 

g/lung 

could be 

calculated 

from 

technical 

reports 

PMN
a
, 

LDH, BrdU 

Bermudez 

et al. 

(2004) 

F344/F Ultrafine 
49.71 

(reported) 

Individual 

g/lung 

could be 

calculated 

from 

technical 

reports 

PMN
a
, 

LDH, BrdU 



Ma-Hock 

et al. 

(2008) 

Wistar/M Nano (ultrafine) 
51.1 

(reported) 

Reported 

mean g 

TiO2/g lung 

PMN, 

LDH, BrdU 

a
Measurements of neutrophils in this study were equated to measurements of PMNs 

(when normalized). 



Table 3.  Endpoints with Data in Selected Studies, by Type of Event 

 

Type of Event Endpoints Reported 

Inflammatory response 

BALF measurements of total cells, 

neutrophils, PMN, macrophages, 

lymphocytes 

Loss of integrity of the alveolar blood:air 

barrier 
NAG, ALKP, GGT, LDH, protein 

Cell proliferation 

BrdU labeling index in bronchioloar cells, 

BrdU labeling index in alveolar cells, 

BrdU labeling index in parenchymal cells 

Fibrosis Fibrosis 

Tumor 
Bronchioloalveolar adenoma, SCC, total 

lung tumors 

Endpoints used in the modeling for each type of event are in bold.  Bronchioloalveolar 

adenoma was selected for the Lee et al. (1985) study; total lung tumors was selected for 

the Heinrich et al. (1995) study (excluding keratinizing cysts) and the Muhle et al. (1991) 

study. 

Abbreviations:  ALKP = alkaline phosphatase; BALF = bronchoalveolar lavage fluid; 

BrdU = bromodeoxyuridine; GGT = γ-glutamyl transpeptidase; LDH = lactate 

dehydrogenase; NAG = N-acetyl-β-D-glucosaminidase; PMN = polymorphonuclear 

lymphocytes; SCC = squamous cell carcinoma 



Table 4.  Maximum Likelihood Results: Baseline, Sequential Maximization, and 

Overall Maximization 

 

Predicted 

endpoint: 

Baseline  

Log-Likelihoods 

Sequentially 

Maximized  

Log-Likelihoods 

Maximization of 

Overall  

Log-Likelihood 

PMN -174.488 -207.270 -207.316 

LDH -79.958 -107.289 -107.378 

BrdU -22.536 -42.731 -42.731 

Fibrosis -217.598 -230.675 -230.253 

Tumors -165.884 -174.715 -174.554 

Sum (Overall) -660.464 -762.680 -762.233 

 

 

  



Table 5.  Maximum Likelihood Estimates for Model Parameters from the 

Sequential Fitting Procedure 

 

Predicted 

endpoint 

Text 

Equation 

Number 

Parameter Values 

PMN 2 
α1 = 

2826.211 
β1 = 

1.524695 
  

LDH 3 
α2 = 

0.109059 
β2 = 

0.910743 
γ2 = 0 δ2 =  -- 

a
 

BrdU 4 
α3 = 

0.621814 
β3 = 

0.188645 
γ3 = 0 δ3 =  -- 

a
 

Fibrosis 5 
(1) = 

0.022597 
(2) = 

0.155016 
(3) = 

0.024936 
 = 

0.030854 

Tumors 6 
0 = 

-4.69946 
1 = 

3.092725 
2 = 0  

a
When γ2 or γ3 equals zero, the value of the power (δ2 or δ3, respectively) is immaterial. 

 

 



Table 6. Maximum Likelihood Estimates for Model Parameters from the Overall 

Maximum Likelihood Fitting Procedure 

 

Predicted 

endpoint 

Text 

Equation 

Number 

Parameter Values 

PMN 2 
α1 = 

2697.475 
β1 = 

1.501885 
  

LDH 3 
α2 = 

0.128698 
β2 = 

0.881975 
γ2 = 0 δ2 =  -- 

a
 

BrdU 4 
α3 = 

0.606409 
β3 = 

0.197698 
γ3 = 0 δ3 =  -- 

a
 

Fibrosis 5 
(1) = 

0.022832 
(2) = 

0.15565 
(3) = 

0.025188 
 = 

0.030184 

Tumors 6 
0 = 

-4.69993 
1 = 

3.104775 
2 = 0  

a
When γ2 or γ3 equals zero, the value of the power (δ2 or δ3, respectively) is immaterial. 
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Figure 1.  TiO2 Tumor Progression

 
 

 



Figure 2a 

 

 
 

 

 

 

 

 

Figure 2b 

Dose-Response Data for All Continuous Normalized  
Precursors 
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Figure 3.  PMN vs Lung Burden  
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Figure 4.  LDH vs Lung Burden  
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Figure 5.  Alveolar Cell BrdU Index vs Lung Burden  
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Figure 6.  Fibrosis vs Lung Burden 
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Figure 7.  Lung Tumor vs Lung Burden  
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